OUT OF CONTROL (groups)! The weak link in the cause-&-effect chain

Welcome back after a bit of silence on my end!welcome[1]

In the last “Quasi-wha??” blogpost, I described 1 type of experimental design: Quasi-experimental.  To review… In quasi-experimental designs, the researcher manipulates some variable, but either 1) doesn’t randomly assign subjects to a control and experimental group OR 2) doesn’t have a control group at all.

For example, the researcher may introduce pet therapy on unit #1 and avoid pet therapy on unit #2 and then afterwards compare the anxiety levels of patients on the 2 units.  That study has a control group (unit #2), but because patients weren’t (& probably couldn’t be) randomly assigned to the units, this would be a quasi-experimental study. The control group in this pet therapy case is what researchers call a “non-equivalent control group.”   Non-equivalent means the groups are different in ways that might affect study results! [Note: For review of what constitutes a true experimental study see first part of  “Quasi-wha??” blogpost.]

WeaknessHerein lies a weak link in the cause-and-effect chain. Quasi- designs are NOT as strong as true experimental designs because something other than our treatment (in this case pet therapy) may have created any difference in outcomes (e.g., anxiety levels).  Why?   Here’s your answer.

Unit #1

In an experimental study, randomly assigning subjects to a

Unit #2

control and a separate experimental group means that all the little, variable weirdities of all subjects are equally distributed to each group.  Each group is the same mix of different types of people. This means we can assume that both groups are the exact same type of
people in regard to things that may influence study outcomes, such as attitudes, values, preferences, beliefs, anxiety level, psychology, physiology and so on.

Unit #1=Apples.        Unit #2=Oranges

In contrast, in the quasi-experimental pet therapy example above, there is probably something that caused a certain type of person to be on unit #1 and a different type to be on unit #2.  Maybe it was their diagnosis, their doctor, their type of surgery, or other.  Thus, we cannot assume that people in unit #1 and unit #2 groups are the same before pet therapy, and so any differences between them after pet therapy might have already existed.

So why do quasi-experimental studies at all?? There are great reasons!  Stay tuned for next blogpost.

Critical thinking: Check out free full-text, quasi-experiment Gough et al., (2017). Tweet for Behavior Change: Using Social Media for the Dissemination of Public Health Messages.  

  1. What makes this a quasi-experimental design?  [Hint: Does it have a control group? Were subjects randomly assigned to groups?  Are both randomization & control group missing?]
  2. What might have caused the change in behavior, instead of the tweets? 
  3. What contribution do you think the study makes to improving practice?

For more information on studies with non-randomized control groups see “Of Mice & Cheese”  or comment below.  Let’s talk!


One thought on “OUT OF CONTROL (groups)! The weak link in the cause-&-effect chain”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s